Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 41(40): 8362-8374, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34413206

RESUMO

Binocular disparity provides critical information about three-dimensional (3D) structures to support perception and action. In the past decade significant progress has been made in uncovering human brain areas engaged in the processing of binocular disparity signals. Yet, the fine-scale brain processing underlying 3D perception remains unknown. Here, we use ultra-high-field (7T) functional imaging at submillimeter resolution to examine fine-scale BOLD fMRI signals involved in 3D perception. In particular, we sought to interrogate the local circuitry involved in disparity processing by sampling fMRI responses at different positions relative to the cortical surface (i.e., across cortical depths corresponding to layers). We tested for representations related to 3D perception by presenting participants (male and female, N = 8) with stimuli that enable stable stereoscopic perception [i.e., correlated random dot stereograms (RDS)] versus those that do not (i.e., anticorrelated RDS). Using multivoxel pattern analysis (MVPA), we demonstrate cortical depth-specific representations in areas V3A and V7 as indicated by stronger pattern responses for correlated than for anticorrelated stimuli in upper rather than deeper layers. Examining informational connectivity, we find higher feedforward layer-to-layer connectivity for correlated than anticorrelated stimuli between V3A and V7. Further, we observe disparity-specific feedback from V3A to V1 and from V7 to V3A. Our findings provide evidence for the role of V3A as a key nexus for disparity processing, which is implicated in feedforward and feedback signals related to the perceptual estimation of 3D structures.SIGNIFICANCE STATEMENT Binocular vision plays a significant role in supporting our interactions with the surrounding environment. The fine-scale neural mechanisms that underlie the brain's skill in extracting 3D structures from binocular signals are poorly understood. Here, we capitalize on recent advances in ultra-high-field functional imaging to interrogate human brain circuits involved in 3D perception at submillimeter resolution. We provide evidence for the role of area V3A as a key nexus for disparity processing, which is implicated in feedforward and feedback signals related to the perceptual estimation of 3D structures from binocular signals. These fine-scale measurements help bridge the gap between animal neurophysiology and human fMRI studies investigating cross-scale circuits, from micro circuits to global brain networks for 3D perception.


Assuntos
Percepção de Profundidade/fisiologia , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Neuroimagem/métodos , Adulto Jovem
2.
J Neurophysiol ; 122(2): 888-896, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291136

RESUMO

The offset between images projected onto the left and right retina (binocular disparity) provides a powerful cue to the three-dimensional structure of the environment. It was previously shown that depth judgements are better when images comprise both light and dark features, rather than only light or only dark elements. Since Harris and Parker (Nature 374: 808-811, 1995) discovered the "mixed-polarity benefit," there has been limited evidence supporting their hypothesis that the benefit is due to separate bright and dark channels. Goncalves and Welchman (Curr Biol 27: 1403-1412, 2017) observed that single- and mixed-polarity stereograms evoke different levels of positive and negative activity in a deep neural network trained on natural images to make depth judgements, which also showed the mixed-polarity benefit. Motivated by this discovery, we seek to test the potential for changes in the balance of excitation and inhibition that are produced by viewing these stimuli. In particular, we use magnetic resonance spectroscopy to measure Glx and GABA concentrations in the early visual cortex of adult humans during viewing of single- and mixed-polarity random-dot stereograms (RDS). We find that participants' Glx concentration is significantly higher, whereas GABA concentration is significantly lower, when mixed-polarity RDS are viewed than when single-polarity RDS are viewed. These results indicate that excitation and inhibition facilitate processing of single- and mixed-polarity stereograms in the early visual cortex to different extents, consistent with recent theoretical work (Goncalves NR, Welchman AE. Curr Biol 27: 1403-1412, 2017).NEW & NOTEWORTHY Depth judgements are better when images comprise both light and dark features, rather than only light or only dark elements. Using magnetic resonance spectroscopy, we show that adult human participants' Glx concentration is significantly higher whereas GABA concentration is significantly lower in the early visual cortex when participants view mixed-polarity random-dot stereograms (RDS) compared with single-polarity RDS. These results indicate that excitation and inhibition facilitate processing of single- and mixed-polarity stereograms in the early visual cortex to different extents.


Assuntos
Percepção de Profundidade/fisiologia , Ácido Glutâmico/metabolismo , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Córtex Visual/diagnóstico por imagem , Adulto Jovem
3.
Curr Biol ; 27(10): 1403-1412.e8, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28502662

RESUMO

Binocular stereopsis is one of the primary cues for three-dimensional (3D) vision in species ranging from insects to primates. Understanding how the brain extracts depth from two different retinal images represents a tractable challenge in sensory neuroscience that has so far evaded full explanation. Central to current thinking is the idea that the brain needs to identify matching features in the two retinal images (i.e., solving the "stereoscopic correspondence problem") so that the depth of objects in the world can be triangulated. Although intuitive, this approach fails to account for key physiological and perceptual observations. We show that formulating the problem to identify "correct matches" is suboptimal and propose an alternative, based on optimal information encoding, that mixes disparity detection with "proscription": exploiting dissimilar features to provide evidence against unlikely interpretations. We demonstrate the role of these "what not" responses in a neural network optimized to extract depth in natural images. The network combines information for and against the likely depth structure of the viewed scene, naturally reproducing key characteristics of both neural responses and perceptual interpretations. We capture the encoding and readout computations of the network in simple analytical form and derive a binocular likelihood model that provides a unified account of long-standing puzzles in 3D vision at the physiological and perceptual levels. We suggest that marrying detection with proscription provides an effective coding strategy for sensory estimation that may be useful for diverse feature domains (e.g., motion) and multisensory integration.


Assuntos
Encéfalo/fisiologia , Percepção de Profundidade/fisiologia , Modelos Neurológicos , Disparidade Visual/fisiologia , Visão Binocular/fisiologia , Humanos , Reconhecimento Visual de Modelos/fisiologia
4.
PLoS One ; 11(1): e0146084, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26726800

RESUMO

Conduction along the optic nerve is often slowed in multiple sclerosis (MS). This is typically assessed by measuring the latency of the P100 component of the Visual Evoked Potential (VEP) using electroencephalography. The Visual Evoked Spread Spectrum Analysis (VESPA) method, which involves modulating the contrast of a continuous visual stimulus over time, can produce a visually evoked response analogous to the P100 but with a higher signal-to-noise ratio and potentially higher sensitivity to individual differences in comparison to the VEP. The main objective of the study was to conduct a preliminary investigation into the utility of the VESPA method for probing and monitoring visual dysfunction in multiple sclerosis. The latencies and amplitudes of the P100-like VESPA component were compared between healthy controls and multiple sclerosis patients, and multiple sclerosis subgroups. The P100-like VESPA component activations were examined at baseline and over a 3-year period. The study included 43 multiple sclerosis patients (23 relapsing-remitting MS, 20 secondary-progressive MS) and 42 healthy controls who completed the VESPA at baseline. The follow-up sessions were conducted 12 months after baseline with 24 MS patients (15 relapsing-remitting MS, 9 secondary-progressive MS) and 23 controls, and again at 24 months post-baseline with 19 MS patients (13 relapsing-remitting MS, 6 secondary-progressive MS) and 14 controls. The results showed P100-like VESPA latencies to be delayed in multiple sclerosis compared to healthy controls over the 24-month period. Secondary-progressive MS patients had most pronounced delay in P100-like VESPA latency relative to relapsing-remitting MS and controls. There were no longitudinal P100-like VESPA response differences. These findings suggest that the VESPA method is a reproducible electrophysiological method that may have potential utility in the assessment of visual dysfunction in multiple sclerosis.


Assuntos
Potenciais Evocados Visuais , Esclerose Múltipla/fisiopatologia , Nervo Óptico/fisiopatologia , Adulto , Estudos Transversais , Progressão da Doença , Eletroencefalografia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Neurite Óptica/etiologia , Neurite Óptica/fisiopatologia , Tempo de Reação , Análise Espectral/métodos
5.
J Neurosci ; 35(7): 3056-72, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25698743

RESUMO

The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception.


Assuntos
Imageamento por Ressonância Magnética , Disparidade Visual/fisiologia , Córtex Visual/irrigação sanguínea , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Oxigênio/sangue , Estimulação Luminosa , Probabilidade
6.
Neuroimage ; 97: 196-205, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24736185

RESUMO

Noninvasive investigation of human sensory processing with high temporal resolution typically involves repeatedly presenting discrete stimuli and extracting an average event-related response from scalp recorded neuroelectric or neuromagnetic signals. While this approach is and has been extremely useful, it suffers from two drawbacks: a lack of naturalness in terms of the stimulus and a lack of precision in terms of the cortical response generators. Here we show that a linear modeling approach that exploits functional specialization in sensory systems can be used to rapidly obtain spatiotemporally precise responses to complex sensory stimuli using electroencephalography (EEG). We demonstrate the method by example through the controlled modulation of the contrast and coherent motion of visual stimuli. Regressing the data against these modulation signals produces spatially focal, highly temporally resolved response measures that are suggestive of specific activation of visual areas V1 and V6, respectively, based on their onset latency, their topographic distribution and the estimated location of their sources. We discuss our approach by comparing it with fMRI/MRI informed source analysis methods and, in doing so, we provide novel information on the timing of coherent motion processing in human V6. Generalizing such an approach has the potential to facilitate the rapid, inexpensive spatiotemporal localization of higher perceptual functions in behaving humans.


Assuntos
Eletroencefalografia/métodos , Sensação/fisiologia , Adulto , Algoritmos , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Modelos Lineares , Masculino , Percepção de Movimento/fisiologia , Estimulação Luminosa , Córtex Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...